АННОТАЦИИ РАБОЧИХ ПРОГРАММ ДИСЦИПЛИН

По направлению 09.06.01 «Информатика и вычислительная техника» Направленность «Информатика и вычислительная техника»

Б1.Б.1 История и философия науки	3
Б1.Б.2 Иностранный язык	4
Б1.В.ОД.1 Педагогика и психология высшей школы	5
Б1.В.ОД.2 Методология научных исследований	7
Б1.В.ДВ.1.1 Теория управления и системный анализ	8
Б1.В.ДВ.1.2 Дифференциальные уравнения	9
Б1.В.ДВ.1.3 Современные проблемы автоматизации и управления технологическими процессами и	
производствами	10
Б1.В.ДВ.2.1 Статистический анализ в научных исследованиях	12
Б1.В.ДВ.2.2 Система уравнений газовой динамики	13
Б1.В.ДВ.2.3 Интеллектуальные производственные системы	14
Б1.В.ДВ.3.1 Теория принятия решений и методы оптимизации	15
Б1.В.ДВ.3.2 Математическое моделирование, численные методы и комплексы программ	16
Б1.В.ДВ.3.3 Интеллектуальные технологии управления техническими системами	17

Б1.Б.1 История и философия науки

Объем дисциплины (модуля)	4 3ET	
Форма обучения	очная	
Часов по учебному плану в том числе:		144
аудиторные занятия		56
самостоятельная работа		52
часов на контроль		36

Промежуточная аттестация в семестрах:

экзамен 2 зачет 1

Формы контроля: -

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Получение аспирантами и соискателями подготовки, позволяющей успешно работать в избранной сфере деятельности, обладать необходимыми научными, педагогическими профессиональными качествами. Программа ориентирована на анализ основных мировоззренческих и методологических проблем, возникающих в науке в современных условиях, и тенденций исторического развития науки

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

УК-2: способностью проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки

В результате освоения дисциплины обучающийся должен

Знать: основные этапы становления науки; структуру научного знания; динамику порождения нового знания; идеалы и нормы научного познания; типы научной рациональности; логику развития и методологию науки; методы научного познания

Уметь: осуществлять перех од от эмпирического к теоретическому уровню анализа; определять объект и предмет исследования; формулировать проблему, цель, задачи и выводы исследования

Владеть: навыками анализа методологии научных исследований; навыками обоснования мировоззренческой и методологической базы проводимых исследований; навыками раскрытия социокультурной значимости современных научных достижений.

- Раздел 1. Возникновение науки и основные стадии её исторической эволюции
- Раздел 2. Философия и наука в эпоху античности и средневековья. Наука в эпоху Возрождения
- Раздел 3. Философия и наука Нового времени
- Раздел 4. Марксистская гносеология и становление неклассической науки
- Раздел 5. Неклассическая философия и наука 20 века
- Раздел 6. Антропологическое направления в западной философии XX в
- Раздел 7. Формирование социально-гуманитарного знания в истории европейской культуры
- Раздел 8. Проблема рациональности, понимания и объяснения в «науках о духе»
- Раздел 9. Различие оснований социального и гуманитарного знаний
- Раздел 10. Наука как вид деятельности, специфика профессионального труда в науке

Б1.Б.2 Иностранный язык

Объем дисциплины (модуля)	5 3ET	
Форма обучения	очная	
Часов по учебному плану в том числе:		180
аудиторные занятия		76
самостоятельная работа		68
часов на контроль		36

Промежуточная аттестация в семестрах:

экзамен 2 зачет 1

Формы контроля: -

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Обучение иностранному языку аспирантов (соискателей), совершенствование иноязычной коммуникативной компетенции, необходимой для продолжения обучения и осуществления научной и профессиональной деятельности.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

УК-4: готовностью использовать современные методы и технологии научной коммуникации на государственном и иностранном языках

В результате освоения дисциплины обучающийся должен

Знать: межкультурные особенности речевого поведения в научной деятельности;

правила коммуникативного поведения в ситуациях межкультурного научного общения;

требования к оформлению научных трудов, принятых в международной практик

Уметь: осуществлять коммуникацию научной направленности (доклад, сообщение, дебаты);

писать на иностранном языке научные статьи, тезисы, рефераты, лексически грамотно оформлять изложение логических операций;

читать оригинальную литературу на иностранном языке;

оформлять извлеченную из иностранных источников информацию в виде рефератов, аннотаций;

извлекать информацию из текстов, прослушиваемых в ситуациях межкультурного научного и профессионального общения; излагать на иностранном языке свою точку зрения на научную проблему;

Владеть: навыками письменной коммуникации, которые реализуются при написании научного доклада/статьи, а также оформлении научной корреспонденции;

подготовленной, а также неподготовленной монологической и диалогической речью в ситуациях научного и профессионального общения (участие в научной конференции)в форме сообщения, доклада и др, демонстрируя навыки аргументированных и оценочных высказываний

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Раздел 1.

Б1.В.ОД.1 Педагогика и психология высшей школы

Объем дисциплины (модуля)	5 3ET	
Форма обучения	очная	
Часов по учебному плану в том числе:		180
аудиторные занятия		76
самостоятельная работа		68
часов на контроль		36

Промежуточная аттестация в семестрах:

экзамен 1 зачет с оценкой 2

Формы контроля:-

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

формирование у аспирантов базовых знаний и умений научного поиска, их практического использования в реальной педагогической деятельности, как необходимой основы формирования всесторонне развитой, социально активной, творчески мыслящей личности. Изучение курса должно обеспечить становление психологической готовности аспиранта к эффективной образовательной деятельности в высшей школе. В процессе семинарских занятий аспиранты должны овладеть разнообразными формами организации педагогического процесса, познакомиться и осмыслить педагогические идеи, традиционные и инновационные технологии педагогического процесса в вузе. Изучение дисциплины способствует формированию нравственно-ценностной и профессионально-личностной ориентации аспирантов в современной мировоззренческой и духовной ситуации российского общества, овладению культурой самообразования, самовоспитания и творческого саморазвития, готовит их к прохождению педагогической практики и повышает их интерес к труду преподавателя высшей школы

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ОПК-8: готовностью к преподавательской деятельности по основным образовательным программам высшего образования

ПК-1: способность адаптировать и обобщать результаты современных научных исследований для целей преподавания профессиональных дисциплин в высших учебных заведениях

ПК-2: способность разрабатывать комплексное методическое обеспечение образовательных дисциплин (модулей) с учетом передового международного опыта

ПК-3: способностью к самостоятельному обучению новым методам исследования, изменению научного и педагогического профилей своей профессиональной деятельности

УК-6: способностью планировать и решать задачи собственного профессионального и личностного развития

В результате освоения дисциплины обучающийся должен

Знать: сущность и проблемы обучения и воспитания в высшей школе, биологические и психологические пределы человеческого в осприятия и усвоения, психологические особенности юношеского в озраста, влияние индивидуальных различий студентов на результаты педагогической деятельности; основные достижения, проблемы и тенденции развития педагогики высшей школы в России и за рубежом, современные подходы к моделированию педагогической деятельности; правовые и нормативные основы функционирования системы образования; псих ологические аспекты образовательной деятельности, псих ологические основания образовательных целей; возрастные, гендерные и социокультурные особенности современного студенчества; психологические корреляты эффективности образовательной деятельности; психологические закономерности, лежащие в основе ее эффективности; принципы и технологию псих ологического проектирования образовательной деятельности; псих ологические методы управления в образовательной деятельности; псих ологические основы эффективного имиджа современного преподавателя и его устойчивой репутации; принципы и технологии эффективного взаимопействия: принципы веления научно психологических аспектов образовательной пеятельности. Уметь: использовать в учебном процессе знание фундаментальных основ, современных достижений, проблем и тенденций развития соответствующей научной области и ее взаимосвязей с другими науками; излагать предметный материал во взаимосвязи с дисциплинами, представленными в учебном плане, осваиваемом студентами; использовать знания культуры и искусства в качестве средств воспитания студентов; анализировать вызовы динамичной социокультурной ситуации к псих ологическим качествам и компетенциям преподавателя высшей школы; разрабатывать траекторию профессионального и личностного роста; разрабатывать все основные составляющие профессиональной деятельности: ориентировочную основу, цели, концептуальную модель, технологии реализации и контроля эффективности применительно к миссии и стратегии развития в уза, образовательным стандартам, образовательным программам, индивидуальному стилю деятельности; выстраивать эффективное взаимодействие, составлять письменные отчеты по псих ологическим аспектам образовательной пеятельности, в том числе научного характера.

Владеть: методами научных исследований и организации коллективной научно-исследовательской работы; основами научно-методической и учебно-методической работы в высшей школе, структурирование и псих ологически грамотное преобразование научного знания в учебный материал, методы и приемы составления задач, упражнений, тестов по различным темам, систематика учебных и воспитательных задач, методами и приемами устного и письменного изложения предметного материала, разнообразными образовательными технологиями; основами применения компьютерной техники и информационных технологий в учебном и научном процессах; методами формирования у студентов навыков самостоятельной работы, профессионального мышления и развития их творческих способностей; технологиями псих ологического проектирования образовательной и исследовательской деятельности в сфере образования, псих ологическими методами управления, разработки и реализации эффективного имиджа, управления конфликтами, эффективного взаимодействия с руководством, коллегами и студентами, саморегуляции и поддержания высокого уровня работоспособности

- Раздел 1. Теоретико-методологические основы педагогики высшей школы
- Раздел 2. Методология и методы научного исследования проблем высшей школы
- Раздел 3. Психологические закономерности развития личности студента
- Раздел 4. Типология современных студентов, система их ценностных ориентаций
- Раздел 5. Психологические основы деятельности преподавателя высшей школы
- Раздел 6. Психологические особенности взаимодействия преподавателя с аудиторией
- Раздел 7. Социально-ролевое общение в студенческом коллективе
- Раздел 8. Психологический анализ деятельности студентов
- Раздел 9. Психологические особенности основных видов деятельности студентов
- Раздел 10. Пути активизации познавательной деятельности студентов
- Раздел 11. Организация самостоятельной работы студентов
- Раздел 12. Учет и оценка знаний студентов
- Раздел 13. Внеаудиторная работа

Б1.В.ОД.2 Методология научных исследований

Объем дисциплины (модуля)	4 3ET	
Форма обучения	очная	
Часов по учебному плану в том числе:		144
аудиторные занятия		56
самостоятельная работа		52
часов на контроль		36

Промежуточная аттестация в семестрах:

экзамен 1 зачет с оценкой 2

Формы контроля:-

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

дисциплина в содержательном плане показывает эволюцию фундаментальных концептуальных и теоретических положения и гипотез, представленных в классических и современных трудах отечественных и зарубежных ученых, специализирующихся в области методологии педагогических исследований

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ОПК-1: владением методологией теоретических и экспериментальных исследований в области профессиональной деятельности

ОПК-2: владением культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий

ОПК-3: способностью к разработке новых методов исследования и их применению в самостоятельной научно-исследовательской деятельности в области профессиональной деятельности

ОПК-4: готовностью организовать работу исследовательского коллектива в области профессиональной деятельности

ОПК-6: способностью представлять полученные результаты научно-исследовательской деятельности на высоком уровне и с учетом соблюдения авторских прав

ОПК-7: владением методами проведения патентных исследований, лицензирования и защиты авторских прав при создании инновационных продуктов в области профессиональной деятельности

В результате освоения дисциплины обучающийся должен

Знать: основные понятия и определения исследовательской деятельности и научного творчества, основные виды информационных источников для научных исследований, характеристику и содержание этапов научного исследования сущность исследовательской деятельности и научного творчества, методы сбора и обработки информации методологию научных исследований в профессиональной области

основы организации командной работы по реализации опытно-экспериментальной работы

Уметь: применять механизмы исследования и их модификации и трансформации, формировать ссылки и цитировать информацию в рукописи, формулировать научно-техническую проблему научного исследования применять методологические основы исследования, мех анизмов их модификации и трансформации, разрабатывать рабочую гипотезу, формулировать гипотезы, виды гипотез, основные требования к научной гипотезе разрабатывать и применять методологические основы исследования, механизмов их модификации и трансформации, составлять программу научного исследования и выбирать методики исследования

Владеть: современным понятийно-категориальным аппаратом и основными методами научного исследования, навыками работы с источниками, методикой ведения записей, методикой работы над рукописью исследования, особенностями подготовки и оформления с точки зрения заимствования информации, методиками исследования в области профессиональной деятельности

новейшими методами научного исследования, методами работы с каталогами и картотеками, методикой работы над рукописью исследования, особенности подготовки и оформления

методологией научных исследований в профессиональной деятельности, методами работы с каталогами и картотеками с использованием новейших информационно-коммуникационных технологий, навыками внедрения результатов исследования СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Раздел 1.

Б1.В.ДВ.1.1 Теория управления и системный анализ

Объем дисциплины (модуля)	4 3ET
Форма обучения	очная
Часов по учебному плану в том числе:	144
аудиторные занятия	58
самостоятельная работа	50
часов на контроль	36

Промежуточная аттестация в семестрах:

экзамен 1

Формы контроля: -

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

формирование у аспирантов углубленных профессиональных знаний в теории управления и системном анализе, в области устойчивости динамических систем, навыков использования принципа максимума в прикладных задачах теории оптимального управления.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ОПК-2: владением культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий

ПК-4: способность использовать результаты исследований для совершенствования математического и программного обеспечения, в том числе в области обработки и анализа экспериментальных данных

ПК-5: способность к разработке новых и совершенствованию существующих методов и средств анализа, обработки информации, интеллектуального анализа данных, математического моделирования

УК-1: способностью к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях

В результате освоения дисциплины обучающийся должен

Знать: - основные типы моделей: статические и динамические, детерминированные и вероятностные;

- типовые модели управляемых динамических систем и методы теории управления;
- методы математической теории управления динамическими системами.

Уметь: - формализовать модели выбора оптимальных решений в виде задач математической теории управления;

- применять принципы выбора оптимальных управлений для динамических систем (принцип максимума Понтрягина);
- рассчитывать оптимальные управления с использованием пакетов прикладных программ.

Владеть: - основами теории и методологией системного анализа;

- при емами конструирования математических моделей управляемых систем;
- навыками оптимального управления для динамических систем.

- Раздел 1. Основные понятия и задачи системного анализа
- Раздел 2. Динамические системы. Устойчивость динамических систем
- Раздел 3. Управление динамическими системами
- Раздел 4. Принцип максимума

Б1.В.ДВ.1.2 Дифференциальные уравнения

Объем дисциплины (модуля)	4 3ET	
Форма обучения	очная	
Часов по учебному плану в том числе:		144
аудиторные занятия		58
самостоятельная работа		50
часов на контроль		36

Промежуточная аттестация в семестрах:

экзамен 1

Формы контроля:-

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Изучение дифференциальных уравнений и уравнений с частными производными, освоение постановки задач и построения решений начально-краевых и спектральных задач линейных и нелинейных дифференциальных уравнений и систем дифференциальных уравнений, изучение последних достижений в области постановки задач и построения решений для динамических систем.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ОПК-2: владением культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий

ПК-4: способность использовать результаты исследований для совершенствования математического и программного обеспечения, в том числе в области обработки и анализа экспериментальных данных

ПК-5: способность к разработке новых и совершенствованию существующих методов и средств анализа, обработки информации, интеллектуального анализа данных, математического моделирования

УК-1: способностью к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях

В результате освоения дисциплины обучающийся должен

Знать: методы решения начально-краевых и спектральных задач линейных и нелинейных дифференциальных уравнений и систем дифференциальных уравнений;

последние достижения в области построения решений дифференциальных уравнений и систем дифференциальных уравнений в задачах оптимального управления и вариационного исчисления;

последние достижения в области постановки задач и построения решений для динамических систем.

Уметь: ставить начально-краевые задачи для дифференциальных уравнений;

исследовать линейные и нелинейные дифференциальные уравнения и динамические системы;

решать начально-краевые и спектральные задачи для дифференциальных уравнений и систем дифференциальных уравнений.

Владеть: аналитическими методами построения решений начально-краевые задач;

численными методами построения решений начально-краевые задач.

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Раздел 1. Дифференциальные уравнения

Б1.В.ДВ.1.3 Современные проблемы автоматизации и управления технологическими процессами и производствами

Объем дисциплины (модуля)	4 3ET	
Форма обучения	очная	
Часов по учебному плану в том числе:		144
аудиторные занятия		58
самостоятельная работа		50
часов на контроль		36

Промежуточная аттестация в семестрах:

экзамен 1

Формы контроля: -

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Овладение аспирантами аппаратом исследования, физического и математического моделирования технологических процессов, особенностями их функционирования и умения его использовать для построения и анализа систем управления объектами любой технологической сложности и в любых технических средах.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ОПК-2: владением культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий

ПК-4: способность использовать результаты исследований для совершенствования математического и программного обеспечения, в том числе в области обработки и анализа экспериментальных данных

ПК-5: способность к разработке новых и совершенствованию существующих методов и средств анализа, обработки информации, интеллектуального анализа данных, математического моделирования

УК-1: способностью к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях

В результате освоения дисциплины обучающийся должен

Знать: основные идеи и методы построения и расчета автоматических систем, предметную область применения систем автоматического управления различных уровней вплоть до заводов-автоматов, гибких автоматизированных линий и робототех нических комплексов; основные принципы использования методов математического моделирования технологических процессов и технологического оборудования; общий подход к методам сбора и переработки технологической информации, необходимой для управления процессом; Функциональные и структурные принципах построения автоматических систем, возможные пути дальнейшего развития предмета изучения.

Уметь: использовать аппарат вычислительной и прикладной математики как для выполнения расчетных процедур, так и для осуществления функций контроля и управления за операциями технологических процессов различной степени сложности; выявлять и практически использовать общие закономерности, имеющиеся в работе автоматических систем самой разной физической природы; применять изученные методы для перенастройки систем в связи с возможными изменениями условий эксплуатации и воздействий внешней среды;

Владеть: владения методологией самостоятельного изучения как отдельных разделов данной дисциплины, так и дисциплин, базирующих ся на ее основе; владения математическим аппаратом анализа и синтеза систем автоматического управления; владения техникой компьютерного моделирования технологических агрегатов и в целом производственных процессов, как объектов управления; владения методами адаптации как полученной модели управляемого объекта, так и законов управления им; владения современной базой алгоритмических и программных средств построения и исследования систем управления.

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Раздел 1. Моделирование и оптимизация. Моделирование технологических процессов. Функции машинного управления процессами; непосредственное и

программное управление; оптимальное управление.

Раздел 2. Моделирование физических процессов. Функциональные модели; физические модели. Статические и динамические

модели. Математическое моделирование

Раздел 3. Разработка моделей технологических процессов.

Методы разработки моделей физических процессов: аналитические методы анализа; линейные регрессионные модели; разработка динамических моделей физических процессов экспериментальными методами

Раздел 4. Организация пассивного эксперимента.

Экспериментально-статистические методы отыскания уравнений статики объектов управления: при планировании эксперимента на двух уровнях и на трех уровнях; метод группового учета аргументов.

Раздел 5. Идентификация моделей.

Оценка соответствия физической и ма-тематической модели технологическому процессу. Методика определения адекватности полученной аналитичес-ким или экспериментальным путем модели реальному объекту.

Раздел 6. Оптимизация управления.

Введение в проблему оптимизации:

постановка задачи оптимизации; целевая функция; ограничения на переменные состояния и переменные управления.

Раздел 7. Проблема адаптивного управления

процессами.

Адаптация к изменениям коэффициентов модели и к изменениям в структуре модели физического процесса; адаптация к изменениям внешней среды.

Раздел 8. Автоматическое управление физическими процессами.

Информация об управляемом процессе как определяющий фактор при решении задачи оптимизации. Принцип полного использования информации и

принцип избыточности информации.

Раздел 9. Системы автоматической оптимизации.

Оптимизация как начальный этап оптимального управления. Системы оптимизации и оптимальные системы управления.

Раздел 10. Экстремальное управление.

Задача автоматического поиска экстремума. Экстремальный регулятор как автоматический оптимизатор при решении задачи управления

Раздел 11. Динамический режим системы автоматической оптимизации.

Системы экстремального управления с непрерывным движением. Движение системы экстремального управления во временной области и на фазовой плоскости.

Раздел 12. Инвариантные системы. Проблема инвариантности и задача

синтеза инвариантной системы автоматического управления.

Раздел 13. Оптимальные системы с полной информацией об управляемом объекте. Задача о максимальном быстродействии; теорема об N-интервалах. Синтез закона оптимального управления для систем с полной информацией об управляемом объекте.

Раздел 14. Динамическое программирование. Принцип оптимальности и метод динамического программирования для решения задачи синтеза оптимального закона управления.

Раздел 15. Динамическое программирование.

Уравнение Беллмана. Задача синтеза оптимальной по точности системы и ее решение; стохастический вариант ме-тода динамического программирования

Раздел 16. Оптимальные системы с максимальной неполной информацией об объекте управления. Синтез оптимального закона управления для системы с одной переменной состояния; оптимальное управление объектом любого порядка;

Раздел 17. Задачи теории оптимальных систем с накоплением информации.

Системы с пассивным накоплением информации; понятие дуального управления.

Раздел 18. Системы адаптивного управления. Самонастраивающиеся системы; игровые системы.

Б1.В.ДВ.2.1 Статистический анализ в научных исследованиях

Объем дисциплины (модуля) 2 ЗЕТ Форма обучения очная

Часов по учебному плану 72 в том числе:

 аудиторные занятия
 38

 самостоятельная работа
 34

Промежуточная аттестация в семестрах:

зачет 1

Формы контроля: РГР

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Формирование у аспирантов углубленных профессиональных знаний о статистических методах обработки информации, приобретение аспирантами навыков постановки задач исследования и построения статистических моделей, оценки параметров, формулировки и проверки статистических гипотез.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ОПК-2: владением культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий

ПК-4: способность использовать результаты исследований для совершенствования математического и программного обеспечения, в том числе в области обработки и анализа экспериментальных данных

ПК-5: способность к разработке новых и совершенствованию существующих методов и средств анализа, обработки информации, интеллектуального анализа данных, математического моделирования

В результате освоения дисциплины обучающийся должен

Знать: классические и новейшие методы статистического анализа, принципы проверки статистических гипотез общие методы обработки информации и методы интеллектуального анализа данных

Уметь: анализировать и использовать современные информационные технологии

использовать статистические методы в научных исследованиях, анализировать результаты и выдавать практические рекомендации

адаптировать существ ующие методы интеллектуального анализа данных к конкретным задачам

Владеть: методологией использования современных информационных технологий

классическими и новейшими методами статистического анализа

методикой адаптации существующих методов интеллектуального анализа данных для конкретных задач

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Раздел 1. Основные задачи статистического анализа. Оценивание параметров распределения

Раздел 2. Выбор типа распределения

Раздел 3. Регрессионные модели

Раздел 4. Однофакторный анализ

Б1.В.ДВ.2.2 Система уравнений газовой динамики

 Объем дисциплины (модуля)
 2 ЗЕТ

 Форма обучения
 очная

Часов по учебному плану 72 в том числе:

B TOM THESTE.

 аудиторные занятия
 38

 самостоятельная работа
 34

Промежуточная аттестация в семестрах:

зачет

Формы контроля: РГР

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Изучение современного состояния разделов науки, относящихся к нелинейным уравнениям с частными производными и углубленного изучения системы уравнений газовой динамики.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ОПК-2: владением культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий

ПК-4: способность использовать результаты исследований для совершенствования математического и программного обеспечения, в том числе в области обработки и анализа экспериментальных данных

ПК-5: способность к разработке новых и совершенствованию существующих методов и средств анализа, обработки информации, интеллектуального анализа данных, математического моделирования

В результате освоения дисциплины обучающийся должен

Знать: точные решения системы уравнений газовой динамики и аналитические методы исследования начальных и краевых задач

Уметь: строить решения задачи Коши, задачи Гурса и характеристической задачи Коши

Владеть: методом степенных и характеристических рядов

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Раздел 1. система уравнений газовой динамики

Б1.В.ДВ.2.3 Интеллектуальные производственные системы

Объем дисциплины (модуля)	2 3ET	
Форма обучения	очная	
Часов по учебному плану в том числе:		72
аудиторные занятия		38

Промежуточная аттестация в семестрах:

зачет 1

Формы контроля: РГР

самостоятельная работа

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Ознакомить аспирантов с управлением жизненным циклом изделия, методикой проектирования и эксплуатации автоматизированных производств, принципами построения и функционирования современных мехатронных систем

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ОПК-2: владением культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий

ПК-4: способность использовать результаты исследований для совершенствования математического и программного обеспечения, в том числе в области обработки и анализа экспериментальных данных

34

ПК-5: способность к разработке новых и совершенствованию существующих методов и средств анализа, обработки информации, интеллектуального анализа данных, математического моделирования

В результате освоения дисциплины обучающийся должен

Знать: этапы комплексного подхода к управлению жизненным циклом изделия, этапы и методы его разработки

Уметь: разрабатывать структурную схему комплексного жизненного цикла изделия

Владеть: программирования продуктов для управления жизненным циклом изделия

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Раздел 1. Промышленная автоматизация: движение от САПР к PLM

Раздел 2. Системы инженерного расчета и анализа деталей и сборочных единиц

Раздел 3. Системы анализа и моделирования технологической подготовки производства

Раздел 4. Системы проектирования технологических процессов

Б1.В.ДВ.3.1 Теория принятия решений и методы оптимизации

Объем дисциплины (модуля)	4 3ET	
Форма обучения	очная	
Часов по учебному плану в том числе:		144
аудиторные занятия		56
самостоятельная работа		52
часов на контроль		36
Проделения полительной полительной		

Промежуточная аттестация в семестрах:

экзамен 2

Формы контроля:-

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

формирование у аспирантов углубленных профессиональных знаний о методологии теории принятия решений применительно к проектированию систем поддержки принятия решений, приобретение аспирантами навыков поиска оптимальных решений.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ПК-4: способность использовать результаты исследований для совершенствования математического и программного обеспечения, в том числе в области обработки и анализа экспериментальных данных

ПК-5: способность к разработке новых и совершенствованию существующих методов и средств анализа, обработки информации, интеллектуального анализа данных, математического моделирования

ПК-6: способность к разработке методов и алгоритмов оптимизации, управления и интеллектуальной поддержки принятия решения в технических, компьютерных и социально-экономических системах

В результате освоения дисциплины обучающийся должен

Знать: технологии и методы моделирования и нахождения оптимальных решений

Уметь: пользоваться современными программными пакетами и совершенствовать заложенные в них метолы оптимизации

Владеть: навыками моделирования и использования в современных методов принятия решений

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Раздел 1. Теория принятия решений

Раздел 2. Методы оптимизации

Б1.В.ДВ.3.2 Математическое моделирование, численные методы и комплексы программ

Объем дисциплины (модуля)	4 3ET
Форма обучения	очная
Часов по учебному плану в том числе:	144
аудиторные занятия	56
самостоятельная работа	52
часов на контроль	36

Промежуточная аттестация в семестрах:

экзамен 2

Формы контроля: -

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Изучение современного состояния математического моделирования, численных методов и программирования, относящихся к решению нелинейных уравнений в частных производных.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ПК-4: способность использовать результаты исследований для совершенствования математического и программного обеспечения, в том числе в области обработки и анализа экспериментальных данных

ПК-5: способность к разработке новых и совершенствованию существующих методов и средств анализа, обработки информации, интеллектуального анализа данных, математического моделирования

ПК-6: способность к разработке методов и алгоритмов оптимизации, управления и интеллектуальной поддержки принятия решения в технических, компьютерных и социально-экономических системах

В результате освоения дисциплины обучающийся должен

Знать: интегральные и дифференциальные законы сохранения в сплошной среде

Уметь: строить алг оритмы программ в том числе алгоритмы распараллеливания

Владеть: численными метопами: характеристик, прогонки. Галеркина

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Раздел 1. Математическое моделирование, численные методы и комплексы программ

Б1.В.ДВ.3.3 Интеллектуальные технологии управления техническими системами

Объем дисциплины (модуля)	4 3ET	
Форма обучения	очная	
Часов по учебному плану в том числе:		144
аудиторные занятия		56
самостоятельная работа		52
часов на контроль		36
П		

Промежуточная аттестация в семестрах:

экзамен 2

Формы контроля: -

ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Практическое изучение средств и методов, используемых при моделировании технических систем. В данном курсе предполагается ознакомить аспирантов с современными методами имитационного и математического моделирования сложных систем, уделяя особое внимание методам, созданным на основе искусственного интеллекта. Поскольку моделирование является одним из направлений использования методики компьютерного эксперимента, планируется изучение и практическое использование программных пакетов AnyLogic и MatLab+Simulink, предназначенных для моделирования сложных систем.

ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ

ПК-4: способность использовать результаты исследований для совершенствования математического и программного обеспечения, в том числе в области обработки и анализа экспериментальных данных

ПК-5: способность к разработке новых и совершенствованию существующих методов и средств анализа, обработки информации, интеллектуального анализа данных, математического моделирования

ПК-6: способность к разработке методов и алгоритмов оптимизации, управления и интеллектуальной поддержки принятия решения в технических, компьютерных и социально-экономических системах

В результате освоения дисциплины обучающийся должен

Знать: основные методы интеллектуального управления сложными системами в различных областях науки и техники: инженерии знаний и рассуждениях на знаниях; обработке нечеткой информации и нечетком управлении; нейросетевой обработке информации и нейросетевом управлении; эволюционном моделировании и генетических алгоритмах управления. Уметь: использовать основные механизмы, указанные в предыдущем пункте в разрабатываемых моделях интеллектуальных управляющих систем при формировании управляющих воздействий в условиях неопределенной или неполностью определенной информации.

Владеть: построения моделей интеллектуальных управляющих систем для управления робототех ническими и мех атронными системами.

- Раздел 1. Общие вопросы имитационного моделирования
- Раздел 2. Система имитационного моделирования AnyLogic. Простые модели.
- Раздел 3. Моделирование сложных систем и процессов в AnyLogic.
- Раздел 4. Динамические системы и системная динамика
- Раздел 5. Модели коллективного поведения и мультиагентные системы.
- Раздел 6. Моделирование систем управления в среде MatLab+Simulink.
- Раздел 7. Моделирование механических систем в среде MatLab+Simulink